12 min read

Purrr::pluck() vs dplyr::pull()

Metaphors are a great way to learn new ideas, esecially when you can anchor the image to something you’re already familiar with. The formal term for this is “neural reuse”1. That’s why I enjoy the salt and pepper visuals from this Stack Overflow post.

The Setup

Here’s a small example of playing with nested data or “getting to the pepper grains.” I generate 3 bootstrap resamples, sample with replacement, from the mtcars data set 2.

library(purrr)
library(dplyr)
library(rsample)
set.seed(808)
bt_resamples <- bootstraps(mtcars, times = 3)
bt_resamples
## # Bootstrap sampling 
## # A tibble: 3 x 2
##   splits          id        
##   <list>          <chr>     
## 1 <split [32/10]> Bootstrap1
## 2 <split [32/9]>  Bootstrap2
## 3 <split [32/9]>  Bootstrap3

Take a Look at My Many Pepper Packets

Let’s say I wanted to select the splits column.

Base R

In base R, it looks like:

bt_resamples$splits
## [[1]]
## <32/10/32>
## 
## [[2]]
## <32/9/32>
## 
## [[3]]
## <32/9/32>
class(bt_resamples$splits)
## [1] "list"

I could also select for the column using double brackets and quotes.

bt_resamples[["splits"]]
## [[1]]
## <32/10/32>
## 
## [[2]]
## <32/9/32>
## 
## [[3]]
## <32/9/32>
class(bt_resamples[["splits"]])
## [1] "list"

Although it’s not recommended since you can never be certain about the ordering of the columns in your data set, you could also select columns by position. Splits is the first column in our bt_resamples data.

bt_resamples[[1]]
## [[1]]
## <32/10/32>
## 
## [[2]]
## <32/9/32>
## 
## [[3]]
## <32/9/32>

Tidyverse

Now, here’s the syntax using tidyverse packages, such as purrr, a functional programming library, and dplyr, a data wrangling library.

bt_resamples %>% pull(splits)
## [[1]]
## <32/10/32>
## 
## [[2]]
## <32/9/32>
## 
## [[3]]
## <32/9/32>
bt_resamples %>% pull(splits) %>% class()
## [1] "list"

You can also use pluck for position-based indexing.

bt_resamples %>% pluck(1)
## [[1]]
## <32/10/32>
## 
## [[2]]
## <32/9/32>
## 
## [[3]]
## <32/9/32>

When you use select() from dplyr, you retrieve the splits column as a dataframe – not a list.

bt_resamples %>% dplyr::select(splits)
## # Bootstrap sampling 
## # A tibble: 3 x 1
##   splits         
## * <list>         
## 1 <split [32/10]>
## 2 <split [32/9]> 
## 3 <split [32/9]>

Even though you only see the one column above, behind the scenes you are keeping all the metadata associated with your resamples.

bt_resamples %>% select(splits) %>% class()
## [1] "bootstraps" "rset"       "tbl_df"     "tbl"        "data.frame"
bt_resamples %>% select(splits) %>% glimpse()
## Observations: 3
## Variables: 1
## $ splits <list> [<rsplit[32 x 10 x 32 x 11]>, <rsplit[32 x 9 x 32 x 11]>…

The “bookkeeping” for each bootstrap resample is accessible if you need the information later. Note how the data points selected for a resample is nested, like onion with many layers. The bootstrap resamples is comprised of 3 splits. And in each split is comprised of a list of 4 items. One of those items is the actual data points of the bootstrap resample.

bt_resamples %>% select(splits) %>% str()
## Classes 'bootstraps', 'rset', 'tbl_df', 'tbl' and 'data.frame':  3 obs. of  1 variable:
##  $ splits:List of 3
##   ..$ :List of 4
##   .. ..$ data  :'data.frame':    32 obs. of  11 variables:
##   .. .. ..$ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##   .. .. ..$ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##   .. .. ..$ disp: num  160 160 108 258 360 ...
##   .. .. ..$ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##   .. .. ..$ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##   .. .. ..$ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##   .. .. ..$ qsec: num  16.5 17 18.6 19.4 17 ...
##   .. .. ..$ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##   .. .. ..$ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##   .. .. ..$ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##   .. .. ..$ carb: num  4 4 1 1 2 1 4 2 2 4 ...
##   .. ..$ in_id : int  30 7 12 25 32 13 2 32 9 10 ...
##   .. ..$ out_id: logi NA
##   .. ..$ id    :Classes 'tbl_df', 'tbl' and 'data.frame':    1 obs. of  1 variable:
##   .. .. ..$ id: chr "Bootstrap1"
##   .. ..- attr(*, "class")= chr  "rsplit" "boot_split"
##   ..$ :List of 4
##   .. ..$ data  :'data.frame':    32 obs. of  11 variables:
##   .. .. ..$ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##   .. .. ..$ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##   .. .. ..$ disp: num  160 160 108 258 360 ...
##   .. .. ..$ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##   .. .. ..$ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##   .. .. ..$ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##   .. .. ..$ qsec: num  16.5 17 18.6 19.4 17 ...
##   .. .. ..$ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##   .. .. ..$ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##   .. .. ..$ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##   .. .. ..$ carb: num  4 4 1 1 2 1 4 2 2 4 ...
##   .. ..$ in_id : int  16 18 29 25 22 3 26 14 16 14 ...
##   .. ..$ out_id: logi NA
##   .. ..$ id    :Classes 'tbl_df', 'tbl' and 'data.frame':    1 obs. of  1 variable:
##   .. .. ..$ id: chr "Bootstrap2"
##   .. ..- attr(*, "class")= chr  "rsplit" "boot_split"
##   ..$ :List of 4
##   .. ..$ data  :'data.frame':    32 obs. of  11 variables:
##   .. .. ..$ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##   .. .. ..$ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##   .. .. ..$ disp: num  160 160 108 258 360 ...
##   .. .. ..$ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##   .. .. ..$ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##   .. .. ..$ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##   .. .. ..$ qsec: num  16.5 17 18.6 19.4 17 ...
##   .. .. ..$ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##   .. .. ..$ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##   .. .. ..$ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##   .. .. ..$ carb: num  4 4 1 1 2 1 4 2 2 4 ...
##   .. ..$ in_id : int  2 1 8 13 18 10 2 23 10 11 ...
##   .. ..$ out_id: logi NA
##   .. ..$ id    :Classes 'tbl_df', 'tbl' and 'data.frame':    1 obs. of  1 variable:
##   .. .. ..$ id: chr "Bootstrap3"
##   .. ..- attr(*, "class")= chr  "rsplit" "boot_split"
##  - attr(*, "times")= num 3
##  - attr(*, "apparent")= logi FALSE
##  - attr(*, "strata")= logi FALSE

Getting A Pepper Paceket

Now that we’ve familiarized ourselves with how to select a column, let’s dig deeper. What if I wanted to get the first bootstrap resample?

Base R

bt_resamples$splits[[1]]$data
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

Tidy Style

I can easilly “pluck” out the packet.

bt_resamples %>% pluck("splits", 1, "data")
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

Getting the Pepper Grains

What if I wanted to see which cycl data points were randomly selected in a single bootstrap resample?

Base R

bt_resamples$splits[[1]]$data$cyl
##  [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

###Tidy Style
I can “pluck” out the packet and “pull” out the pepper.

bt_resamples %>% pluck("splits", 1, "data") %>% pull(cyl)
##  [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

Conclusion: From Packets to Pepper

purr:pluck() and dplyr:pull() are useful functions for working with nested data types, especially list columns. I like the distinction between specifying the hierarchy (pluck) and the actual act of getting the data structure of interest (pull).

Extra Spice

Here’s an interesting discussion tidbits about using as_tibble() before dplyr::mutate().

And finally the dplyr documentation is a good read once you dive into the rabbit-hole of metaprogramming.